منابع مشابه
JORDAN BIMODULES OVER THE SUPERALGEBRAS P (n) AND Q(n)
We extend the Jacobson’s Coordinatization theorem to Jordan superalgebras. Using it we classify Jordan bimodules over superalgebras of types Q(n) and JP (n), n ≥ 3. Then we use the Tits-Kantor-Koecher construction and representation theory of Lie superalgebras to treat the remaining case Q(2).
متن کامل2 7 N ov 1 99 9 Quadratic Conformal Superalgebras
In this paper, we shall classify “quadratic” conformal superalgebras by certain compatible pairs of a Lie superalgebra and a Novikov superalgebra. Four general constructions of such pairs are given. Moreover, we shall classify such pairs related to simple Novikov algebras.
متن کاملBlocks of Lie Superalgebras of Type W(n)
Let g be a simple, finite-dimensional Lie superalgebra over C. These have been classified by V. Kac. Unless g is a Lie algebra or a Lie superalgebra of type osp(1, 2n), the category of finite-dimensional representations of g is not semisimple; q.v. [8]. This leads to a classification problem. For example, in [4], the representation theory of sl(m,n) is worked out by showing it is wild when m,n ...
متن کاملSuperspace Representations of SU(2,2/N) Superalgebras and Multiplet Shortening
We derive massless and massive representations of all SU(2,2/N) superalgebras by using superfields defined in “harmonic superspace”. This method allows one to easily construct “short superfields” which are relevant in the analysis of the AdS/CFT correspondence.
متن کاملOn Complex Nilpotent Leibniz Superalgebras of Nilindex N+m
We present the description up to isomorphism of Leibniz superalgebras with characteristic sequence (n|m1, . . . , mk) and nilindex n+m, where m = m1 + · · ·+ mk, n and m (m 6= 0) are dimensions of even and odd parts, respectively. Mathematics Subject Classification 2000: 17A32, 17B30.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Noncommutative Geometry
سال: 2008
ISSN: 1661-6952
DOI: 10.4171/jncg/15